Soviet Physics Doklady 1960 Vol.4 No. 6 pp.1210-1213.

Fluid Mechanics

THE BOUNDED VARTATION OF CONTINUOUS SOLUTIONS
OF THE HYDRODYNA MIC EQUATIONS

A, M, Molchanov
(Presented by Academician M, V. Kelbyshii, August 15, 1959)

(Translated from: Doklady Akad, Nauk SSSR Vol, 129, No. 6,
pp. 1257-1260, November-December, 1959)

(Original article submitted August 11, 1959)

The equations of hydrodynamics have the form
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where (1f Lagranglan coordinates are used),

2
ul =y, u® =9, u® =E+%’

U" =p, U?=—u, U®=pu, ®

with u the velocity, v the specific volume, p the pressure, E = E(p, v) the specific internal energy.

Our aim in this paper is to prove that the solution of (1) is of bounded varfation. In order to do this, we
assume, first of all, that the initial values are of bounded variation and, secondly, that the solution {s continuous
in the strip 0 =t = t;, —® < x < +m. The second assumption is not essential, but it makes it possible to carry
out the proof by using a relatively uncomplicated technique. It is found that {mportant features of the system of
hydrodynamic equations appear when these equations are taken as special cases of the hyperbolic system

du® « 0uP 3)
o TV =0

(where Ug are functions of the variables u®),

The hydrodynamic types of system are distinguished by the presence in them of functions which, in a cer-
tain relation, play a part similar to that of entropy in the hydrodynamic equations, Since this relation is in the
form of an equality, such "entropic® systeins form a very small class of the general hyperbolic systems. The proof
that the solutions are of bounded variation is given below for all these systems, "Entropic® systems occupy an in-
termediate position between linear systems like the Cauchy type of problem, and general systems (3) for which
the solutions, in general, tend to infinity for finite values of t even with initial values that are constant outside a
certain interval, and smooth inside it,

We will now consider the method of proof. The calculations gain considerably in clarity as they are carried
out in the general form for a system (3) with an arbitrary number of equations. Our flrst goal is to rewrite the
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system (3) in the form of an equivalent system of integral equations, from which we can then obtain an estimate

a
% dx. This can be done by doubling the number of unknown functions by introducing, in addition to

or {

the u% the functions v* = 3%/ 3x. The system of equations satisfied by v* s obtained by differentiating the
equations of (3) with respect to x, and has the form:
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0

do* 3
4 L Uiy = 0. @

In order to obtain the integral equations desired, it is convenient to replace the system (4) by a simpler
diagonalized system for the new set of functions q:" , which are linear combinations of the v& with coefficlents

depending on u®:

«U . (5)

The functions ¥ are no longer the total derivatives of any function of u® as the v& were, Nevertheless,
¢tdx = Ihdu® is a linear combination of the differentials du®, and It is convenient to denote this expression by
8" = [ydu= as is done {n thermodynamics, and to speak of a special “differential,” rememberling, of course,
that we cannot always find a function $H [u(’) L N uln 1 having /bdu® as a differential. The matrix in-
verte to lg will be written as mc:, , so that ey =- 3. After a relatively simple calculation, we obtatn:

(6)
a¥ op*  OAL
where or 1 AL+ et = Caneel,
AY == BBUZms, (1
o al 5
Chp = (—1———) Nimgmi.
# o®  ouv) T 8)

The existence of a matrix I which transforms U):S into diagonal form A’f, follows, of course, directly from
the fact that the system (3) is hyperbolic, The matrix m,f,s is made up stmply of the eigenvectors of Ug , while
! I,J, is formed from the set of vectors biorthogonal to these efgenvectors, Since the elgenvectors are defined only
to within an arbitrary multiplylng factor, however, the matrix ! l; can be multiplied on the left by an arbltrary
diagonal matrix without changing Ab.

The fact that we have this frcedom of cholce can be used to simplify the tensor C‘&B as much as possible,
We will try, for example, to reduce the right-hand slde of one of the equations of the system (6) to zero, It s
evident from (8) that, in general (for AL # 0), this will occur when, and only when

ar arg

X 50 9)

oud  uY ’ ¢
Le.,1f, and only 1f, the speclal "differential® & - - [, du® is a total differentlal, In more precise terms, it

Wi occur when the special differential has an integrating factor. For a system of two equatlons, both the special
differentials have integrating factors. For systems of more equations, none of the special differentlals will, as a
tule, have an integrating factor. Thus, it Is particularly striking that the hydrodynamic equations are exceptions
to this rule, The existence of an integrating factor for one of the special *differentials” arising from this system
of equations 1s equivalent to the known thermodynamic identity

ds - -;-.-(d[i' - opdo). (10)

This remark forms the basis for {ntroducing the term "entropy® for any integral special "differential,”
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We now consider the general system (6), and note that the solutions of such a system tend to infinity for a
finite value ty, no matter how smooth the function defining the initial condition for t = 0, This i3 well illustrated
by the behavior of the model® system

,‘),P(-'i) ()q,(-'l)

(2)
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with initial conditions <p(1) (x,0) = ¢(’) (x,0) = (p(’) (x,0) = a(x) for t = 0, where a(x) is an even function of x
equal to unity in the interval (0,2), smoothly decreasing to zero in (2,3), and equal to zero on the ray (3, m), It
is not difficult to verify that, in the rectangle =1 = x < 1,0 =t < 1, the solution is given by the formula

1
0 (12)

The behavior shown by the example of the system (11) is essentfally different from the behavior of an *over-
turning front™ (a "gradient catastrophe®) in the case of a single equation (or of a system of two equations), The
difference les in the fact that, in the case of a single equation, the growth of ¢ automatically causes the character~
{stics to concentrate in a smaller reglon, and this compensates for the increase in ¢, This is clearly evident from
Eq. (6), If C&B = 0, then, for increasing ¢, it is necessary that 3A/dx < 0, and this means that the characteristics
are being squeezed together. It is not difficult to verify that this "compression® of the characteristics is just suffi-
cient to keep the integral of the absolute value of ¢ constant, If C‘é@ # 0, it can happen that the terms of
Chpp?9P cause a growth of ¢ which is not compensated by a compression of the characteristics, In fact, this can

-|-c0
cause a partial spreading of the characteristics so that S |9 | dx 1s increased by both causes,
—00

A separation of the terms of C‘;n ¢%P thus means a separation of an uncompensated part of the quadratic

form, and this has a strong effect in causing the solution to tend to infinity for a finite t,. The equations (6) and

» aA¥

A
relations (8) clearly show the difference in origin of terms of the type -af ¢ = i myo*eP and of the type
u
Chap®pP. The first have their origin with the variability of the eigenvalues of the matrix U% , and their effect
is automatically compensated by a compression of the characteristics, The second are produced by the rotation**
of the eigenvectors, and for them there are no obvious compensating factors. In each case, these factors are ab-
sent if, in the system (6), the coefficients depending on u are replaced by constants,

We now turn to the proof of the basic theorem, and, first of all, give a precise definition of a hydrodynasnic-
type system of equations,

Definition 1, A special “differentlal” 8" = [3*du*and the corresponding equation in (8) are called entrop-
ic, if 6% " s a total differential, 1.e., if Cgh =0 for all ¢and B,

Definition 2, The system of equations (3) is called a hydrodynamic-type system if it has at least one

* This system is typical in the sense that it {s not clear that there is a system of form (3), much less a system of
the form (1), from which the system (11) can be obtaiged, by using the above construction, It follows from (7)
that a system of the type (3) with arbitrary constant A}, can be found. In this case, the freedom of choice of the
matrix 1 l; may make it possible to obtain constant values for cg,ﬂ . It nevertheless remains completely unknown
whether such a method could lead to the construction of a system of the type (11),

* * Something similar probably happens in the case of systems dr/dt = A (t)r of ordinary equations. Weset A=

= UAU™, where A is a constant triangular matrix with negative elgenvalues, and U = eSt, where S is a constant
antisymmetric matrix. Even though all the eigenvalues of A are negative, according to Lyapunov it {s possible to
draw conclusions concerning the stability of the system only for slow rotations of U, i.e., for small S. If, for ex~

ample, A = (—; __; ) and S = (__g ; ), then the system becomes unstable,
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*entropic® equation, and if, in the nonentropic equatlons of the system (6) the coefflcients CHLB of any two non-
entropic terms ¢?¢P are equal to zero.

Note, For a system of three equations to be of the hydrodynamic type, it s sufficfent for it to have an
"entropy" In this case, the matrix ! '& can be chosen so that the tensor Cy g will have the desired structure, To
do this, it is sufficient to make two coefficients Cn and C}, equal to zero, The equations Cu =0and C} =0
yield two conditions, one on each of two norentropic efgenvectors.

We will assume now that the system is of the hydrodynamic type, and will change the order of the equation
in (6) so that the entropic equations come flrst:

2 (M) =0, 1<p<ng e

iil +ax(A ¢) = pie¥ + ¢, ny+ 1 v n. 1)

Here the coefficients py are expressible linearly, and the coefficients q¥ quadratically in terms of the "entropic®
terms ¢,
For a hydrodynamic-type systcm therc fs, therefore, a "splitting off* of the entropic equations, which (if it
is assumed that the functions A"} and Clig are glven, which is allowable for obtaining a priori estimates) can be
40
integrated independently , and which have solutions for which S | ¢ (%, ) | dx1s uniformly bounded for all t > 0,
—00
The norentropic terms form a system of linear equations with coefficients depending on the entropic terms,

o0
For this system, the integrals S | " (x, £)|dx are generally no longer bounded. Their rate of growth, however, 1s

not greater than ¢Xp (S a dt) where
0
+oo
a(t) = max S lo* (x, £)] dx.
1< —c0

This result can be proven by writing Eq. (14) as integral equations along the corresponding characteristics,
and applying the method of successive approximations to the integral equations obtained,

Note, In this proof, it 1s essential to use the fact that Cga = 0 for any system and for arbitrary it and o,
This result can be obtained directly from (8) by noting that A Z is a diagonal matrix, and it leads to the simple
estimate

t, 40 “+oo .
Y (x, 1) |dxd t v (x, t)|dt
§_Sm|q (x, t) | dx dt < cons (l)r%%:.[_&ow (x, 0] ]

for the terms qV,
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